Search Article 
 
Advanced search 
Official publication of the American Biodontics Society and the Center for Research and Education in Technology
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL HYPOTHESIS
Year : 2015  |  Volume : 6  |  Issue : 1  |  Page : 6-9

Possible mechanisms of lack of dentin bridge formation in response to calcium hydroxide in primary teeth


1 Department of Pedodontics and Preventive Dentistry, Drs. Sudha and Nageswara Rao Siddhartha Institute of Dental Sciences, Krishna District, Andhra Pradesh, India
2 Department of Oral and Maxillofacial Pathology, Anil Neerukonda Institute of Dental Sciences, Vishakapatnam, Andhra Pradesh, India

Correspondence Address:
G R Ravi
Department of Pedodontics and Preventive Dentistry, Drs. Sudha and Nageswara Rao Siddhartha Institute of Dental Sciences Chinnaoutpalli, Gannavaram, Krishna - 521 286, Andhra Pradesh
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2155-8213.150863

Rights and Permissions

Introduction: The usage of Calcium hydroxide (CaOH2) has wide applications due to the property of osteo-inductive, protective, and antibacterial actions. However, it is not used in primary teeth, as it fails to form reparative dentin and the exact mechanism has not been explained. The hypothesis: The authors propose an explanation that lack of dentin bridge formation in response to (CaOH2) in primary teeth could be multifactorial: inability of the deciduous stem cells to generate complete dentin-pulp-like tissue; the absence of calcium-magnesium-dependent adenosine triphosphatase (Ca-Mg ATPase) in the odontoblasts; the pre-existing predilection of deciduous dentine pulp to form odontoclasts; the solubility of (CaOH2). Evaluation of the hypothesis: The hypothesis discusses the innate traits of the deciduous stem cells that lack the ability to form the dentin bridge, the absence of Ca-Mg ATPase enzyme and increased solubility of (CaOH2) together fail to stimulate the odontoblasts. Alternatively, pre-existing progenitor cells with proclivity to change into odontoclasts may cause internal resorption and hamper formation of reparative dentin.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed10147    
    Printed253    
    Emailed0    
    PDF Downloaded981    
    Comments [Add]    
    Cited by others 2    

Recommend this journal