Search Article 
Advanced search 
Official publication of the American Biodontics Society and the Center for Research and Education in Technology
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
Year : 2020  |  Volume : 11  |  Issue : 4  |  Page : 103-107

Effect of Acrylic Polymerization on Cytotoxicity, Residual Monomer Content and Mechanical Properties

Department R&D, Spofa Dental as Markova 238, 506-01 Jicin, Czech Republic

Correspondence Address:
Zbigniew Raszewski
Swierkowa 10, Magdalenka
Czech Republic
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/denthyp.denthyp_85_20

Rights and Permissions

Introduction: The aim of this study was to test and find connection between three different parameters of acrylic resins: cytotoxicity, residual monomer content in the material and flexural strength. Materials and Methods: Superacryl Plus (SpofaDental, Czech Rep.) acrylic material has been polymerized in three different ways, short-time polymerization (45 minutes), normal time (90 minutes) and long-time (7 hours 30 minutes). Flexural strength was tested in compressive instrument Shimadzu for 65 × 10 × 3.3 mm samples. Then after 24 hours the samples were broken. In 50 mm diameter and 1 mm thick samples, residual monomer was determined by gas chromatography (according to ISO standard), and the last series of the sample was used to perform cytotoxicity tests (5 mm diameter). Statistical analysis: Data were analyzed by two-way ANOVA (in GraphPad Software Inc., San Diego, CA, USA), with p-value < 0.05 as statistically significant. Results: The results from the tests show that the greatest inhibition in the development of cell cultures (VERO CCL-81) by MTT assay), was observed for the sample polymerized in the first short-time method (73.49±10%). The material also had the largest content of residual monomer 2.02±0.08% (p-value < 0.01) and lowest flexural strength 71.53±2.26 MPa. Hardened acrylic resins over 60 minutes do not adversely affect cell cultures (undisturbed growth 83.18±10.72%). The residual monomer content was below 1% (p-value < 0.01) and the mechanical resistance to fracture was over 80 MPa (p-value < 0.01). Conclusion: The use of a short polymerization method of acrylic materials can adversely affect both the mechanical properties of the prosthesis itself and its biocompatibility. From a clinical point of view, it is important to take care about the polymerization times of acrylic. Dentures for allergic patients should be carried out in long-term polymerization when the content of residual monomer is as low as possible.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded238    
    Comments [Add]    

Recommend this journal