Search Article 
Advanced search 
Official publication of the American Biodontics Society and the Center for Research and Education in Technology
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
Year : 2023  |  Volume : 14  |  Issue : 1  |  Page : 36-38

Effect of addition of polymerized polymethyl methacrylate (PMMA) and zirconia particles on impact strength, surface hardness, and roughness of heat cure PMMA: An in vitro study

1 MSc student, Karbala, Iraq
2 Prosthodontic Department, College of Dentistry, University of Baghdad, Bab Al-Muadham campus of the University of Baghdad, Baghdad, Iraq

Correspondence Address:
Duaa Subhi Rasan
MSc student, Karbala
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/denthyp.denthyp_151_22

Rights and Permissions

Introduction: This study was designed to examine the effects of addition of the combination of polymerized polymethyl methacrylate (PMMA) and zirconia (ZrO2) particles to heat cure PMMA resin on impact strength, surface hardness, and roughness. Methods: The 70% (w/w) of polymerized PMMA powder (particle size: 0.70 µm) was mixed with 30% (w/w) of zirconia powder (ZrO2) (1 µm) to produce PMMA-ZrO2 filler. Ninety acrylic specimens created were divided into three groups containing 0% wt (Control group), 2% wt, and 4% wt, PMMA-ZrO2 filler. Ten specimens were used for impact strength, surface hardness and roughness test, blindly. Data were analyzed via one-way ANOVA and the Tukey post hoc test using R 3.6.3. Results: There was statistically significant difference among study groups regarding surface hardness and roughness (p < 0.001). Yet, nonsignificant difference was found on the subject of impact strength (p = 0.33). Post hoc test showed statistically significant difference for all pairwise comparisons as regards surface hardness and roughness (p < 0.05). Conclusion: The incorporation of PMMA-ZrO2 filler did not improve impact strength (resistance during an unexpected blows or dropping). Yet, increased surface roughness and hardness, concentration-dependently.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded59    
    Comments [Add]    

Recommend this journal